RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

SECOND YEAR

B.A./B.SC. THIRD SEMESTER (July – December), 2012 Mid-Semester Examination, September 2012

Date : 10/09/2012

CHEMISTRY (Honours)

 $\label{eq:paper:III} \mbox{Time }: \mbox{2 pm} - \mbox{4 pm} \mbox{ Paper: III} \mbox{ Full Marks}: 50$

[Use Separate Answer Script for each Group]

$\underline{Group-A}$

(Answer any one question)

1.	a)	Write the I.U.P.A.C name of the followings:	[1]
		i) $[Cr(H_2O)_5Cl]Cl_2$	
		ii) Na ₂ [Fe(CN) ₅ NO]	
	b)	Distinguish between—	[3]
		i) Inert complex and Labile complex	
		ii) Ambidentate ligand and Flexidentate Ligand	
	c)	Give a concise account on "Inner-metallic complex".	[2]
	d)	State the postulates of Werner's co-ordination theory and how can it be verified.	[3]
	e)	Compare the limitations of Valence Bond Theory. Arrange the stabilities of O_2^{2-} , O_2^+ and O_2^- ions.	[3]
	f)	Can KMnO ₄ oxidise chloride, bromide and iodide at pH = 3? Given $E^{\circ}_{MnO_{4}^{-}/Mn^{2+}} = 1.51V$;	
		$E^{o}_{\text{Cl}_2/2\text{Cl}^-} = 1.36\text{V} \; ; \; E^{o}_{\text{Br}_2/2\text{Br}^-} = 1.07\text{V} \; ; \; E^{o}_{\text{I}_2/2\text{I}^-} = 0.54\text{V} \; . \label{eq:energy_energy}$	[3]
	g)	Why is solutions of ferrous salt always prepared and preserved in an aqueous acidic solution? —	
		Explain. $E^{o}_{Fe^{3+}/Fe^{2+}} = 0.77V$; K_{SP} of $Fe(OH)_3$ and $Fe(OH)_2$ are 4×10^{-38} and 2×10^{-15} .	[3]
2.	a)	i) pK_a for $H_3AsO_4 = 2.3$ and for $H_3AsO_3 = 8.2$ from the above pK_a values predict the structure of H_3AsO_4 and H_3AsO_3 .	[2]
		ii) $CaO + SiO_2 \rightarrow CaSiO_3$, Explain the acid-base reaction in terms of Lux-Flood Definition.	[2]
		OR	[4]
	a)		[1+1]
	u)		[1 1 1]
		$\overset{ec{II}}{\mathbf{C}}$	
		$ \begin{array}{ccc} O \\ C \\ NH_4I + BiN \rightleftharpoons & ; NH_2 & NH_2 + NH_3 \rightleftharpoons \end{array} $	
		ii) Mention the limitations of HSAB principle.	[2]
	b)	Draw the molecular orbital diagram of CO molecule. From the diagram show that CO molecule is	
	U)	a π -acid ligand.	[4]
	c)	Stability of a chelate complex is greater than that of a non chelated complex. —Justify.	[2]
	d)	Will iodide be oxidised to iodine by ferric at pH =4.5? $E^{o}_{Fe^{3+}/Fe^{2+}} = 0.77V$; $E^{o}_{I_{5}/2\Gamma} = 0.54V$ K _{SP} of	
	α,	Fe(OH) ₃ and Fe(OH) ₂ are 1×10^{-38} and 1×10^{-16} .	[3]
	۵)	· /-	
	e)	Can metallic silver displaces hydrogen from 1(N) HI solution? $E^{o}_{Ag^{+}/Ag} = 0.80V$; K_{SP} of AgI is	
		1×10^{-16} ; $E^{o}_{I_2/2\Gamma} = 0.54V$.	[2]
	f)	Write down the structural change of the indicator barium diphenylamine sulphonate during red-ox titration.	[1]

Group – B

(Answer any one question)

- 3. a) Give the principal products of the following reactions and write the plausible mechanism for each of reaction. [4×2]
 - i) PhCOOEt + $H_2^{18}O \xrightarrow{H^+, reflux}$
 - ii) $MeCOOCH_2CH = CHMe + OH^- \xrightarrow{heat}$
 - iii) MeCOOCMe₃ $\xrightarrow{\text{H}_3\text{O}^+}$
 - iv) $2,4,6-\text{Me}_3\text{C}_6\text{H}_2\text{COOEt} \xrightarrow{\text{OH}^-}$
 - b) Benzoin gives PhCH(OH)COAr (Ar = Me $-\bigcirc$ +) when treated with paramethylbenzaldehyde in presence of KCN/EtOH. Explain. [3]

[3]

[2]

- c) In Perkin reaction styrene is a side product along with Cinnamic acid. Propose a mechanism which can explain both the products.
- d) Predict the product of the following reaction. Give mechanism.

- 4. a) Complete the following reactions and write mechanism in each case and mention stereochemistry of products. [3]
 - i) EtC \equiv CEt $\frac{\text{(i) Na/liq NH}_3 \text{ or Li,EtNH}_2, -78^\circ \text{(ii) aq NH}_4 \text{Cl}}{\text{(iii) aq NH}_4 \text{Cl}}$
 - ii) EtC = CEt $\xrightarrow{\text{(i) Sia}_2\text{BH,THF,(ii) ACOH}}$
 - b) Write out the products of 1,2 addition and 1,4 addition of (a) HBr and (b) DBr to 1,3-cyclohexadiene. What is unusual about the products of 1,2- and 1,4- addition of HX to unsubstituted cyclic 1,3- dienes? [2.5]
 - c) Give the major product for each of the following reactions with suitable mechanisms. [2.5]
 - i) $MeCH = C = CH_2 + HCl \rightarrow$
 - ii) $PhCH = C = CH_2 + HCl \rightarrow$
 - d) Carry out the following conversions. Mechanism is not necessary. $[4\times2]$

$\underline{Group-C}$

(Answer <u>any one</u> from each unit)

<u>Unit - I</u>

5.	a)	How does one explain the generation of viscosity from molecular point of view?	[2]
	b)	Calculate the terminal speed of fall in water at 25° C of a spherical ball of diameter 1.00 mm and density 7.8 gm cm ³ . Mention the assumptions made for this method.	[3]
	c)	As temperature increases, the surface tension between liquid and solid is expected to change. Justify or criticize it. Comment on the equivalency of surface energy and surface tension.	[3]
6.	a)	True or False? Newton's viscosity law fails at extremely high flow rates.	[2]
	b)	i) Arrive at the equation of pressure drop across a curved surface, relating the surface tension of liquid.	[3]
		ii) What pressure in atmospheres is required to prevent water from rising in a 10 ⁻⁴ cm diameter capillary at 25°C at 1 atm ² .	[1]
	c)	Account for the role of Reynold Number for streamline or turbulent flow.	[2]
		<u>Unit - II</u>	
7.	a)	Arrive at the expression for the equilibrium constant of a generalized chemical reaction in terms of the standard free energy change of the reaction at a constant temperature.	[3]
	b)	Explain with reason whether this equilibrium constant could have any unit.	[1]
	c)	Next derive the necessary relationship that shows how equilibrium constant varies with temperature.	[2]
	d)	Explain the fact that the dissociation of acetic acid gets enhanced upon addition of neutral salts like NaCl to the solution.	[2]
8.	a)	A reaction at equilibrium is perturbed with an infinitesimall change of — i) pressure at constant temperature and	
		ii) temperature at constant pressure.	
		Show that in the two cases the direction of the advancement of the reaction depends upon—	
		i) volume change and	[2]
	1 \	ii) enthalpy change of the reaction respectively.	[3]
	b)	Define fugacity for a real gas.	[1]
	c)	At what condition the fugacity of a real gas reduces to its pressure.	[1]
	d)	A gas which obeys the law $P(V - b) = RT$. Show how the fugacity of this gas is related to its pressure.	[3]

数 総 る